Thermodynamics Multicon Syst
Hours
Semester
Fundamental Understanding
Articulate how individual molecular and quantum behaviors are related to classical thermodynamics. Demonstrate how the variables from the fundamental laws of thermodynamics are related to each other.
Open Systems & Pure Fluids
Perform 1st & 2nd analysis of heat and work interactions for open systems. Calculate process variables for pure fluids using equations of state, departure functions, and corresponding states.
Pure-Fluid Calculations & Relationships
Demonstrate use of correlations and equations of state properties of pure fluids (e.g., vapor pressure, molar volumes, etc.). Utilize ideal mixing properties and excess properties in calculating the properties of mixtures. Show relationships between pure-fluid properties (e.g., Clapeyron Equation) and determine partial molar enthalpies, volumes, and entropies from various methods (e.g., experimental data and from equations for excess Gibbs energy).
Pure-Fluid Calculations & Relationships
Calculate properties of pure fluids (e.g., vapor pressure, molar volumes, etc.) using correlations and equations of state. Calculate the properties of mixtures using ideal mixing properties and excess properties. Show relationships between pure-fluid properties (e.g., Clapeyron Equation) and determine partial molar enthalpies, volumes, and entropies from experimental data and from equations for excess Gibbs energy.
Phase Equilibrium
Demonstrate proficiency with the basic equations for vapor-liquid equilibrium using the fugacity/fugacity coefficients and activity/activity coefficients. Find vapor-liquid equilibrium phase compositions, dew points, and bubble points for binary systems with ideal gas phase using those parameters. Compute liquid-vapor equilibrium in binary systems and utilize gamma and phi methods at a given temperature, pressure, and feed composition, liquid and vapor compositions and amounts vaporized. Utilize liquid-liquid equilibrium equations and determine solid-liquid solubility.
Phase Equilibrium
Write down the basic equations for vapor-liquid equilibrium using the gamma and phi methods. Find vapor-liquid equilibrium phase compositions, dew points, and bubble points for binary systems with ideal gas phase using the method. Calculate, at a given temperature, pressure, and feed composition, liquid and vapor compositions and amounts vaporized using the gamma and phi methods. Calculate liquid-liquid compositions using excess Gibbs energy equations. Calculate solid-liquid solubilities.
Chemical Equilibrium
Know and use the relationship among heats of formation, absolute entropy and Gibbs energy of formation. Know and use the relationship between Gibbs energy of formation and the equilibrium constant. Use the equilibrium distribution of reacting ideal gas mixtures, equilibrium compositions and temperature for a given heat interaction (e.g., adiabatic, isothermal, or given heat leak) for a given feed composition, pressure, and initial temperature and real fluids.